Mid-Semestral Exam 2014-2015

January 31, 2016

Problem 1.(a). State true or false with justification. For fields ' C K, and o € K, if
[F(a) : F]is odd then F(a) = F(a?).

Proof. Suppose F(a) # F(a?). Clearly this implies that o ¢ F'(a?). We can also conclude
that the minimal polynomial of a over F(a?) is z? — a?. Hence [F(a) : F(a?)] = 2. But we
know that [F(a) : F] = [F(a) : F(a?)][F(a?) : F]. Hence we must have 2|[F(«) : F] and
thus we arrive at a contradiction. So F(«) = F(a?) and the given statement is true. O

Problem 1.(b). State true or false with justification. The regular 5-gon is not constructible
by straightedge and compass.

Proof. The problem of constructing the regular n-gon is equivalent to the problem of
constructing the angle 27 /n which in turn is equivalent to the problem of construct-
ing cos(2m/n). In our problem we need to check the constructibility of cos(27/5). Now
cos(27/5) = (exp?™/° + exp~27/5) /2. So we have Q C Q(cos(27/5)) C Q(cos(exp?™/?)).
Now Q(cos(exp?™/?))/Qis a cyclotomic extension of degree 5—1 = 4. Also [Q(cos(exp?™/?)) :
Q(cos(2m/5))] = 2 because cos(exp?™/?) satisfies the polynomial 22 — 2 cos(27/5)x + 1 and
these two fields can not be equal. Hence [Q(cos(27/5)) : Q] = 2. By the fundamental
theorem of Galois theory this extension is Galois. We know that if a real number « is con-
tained in a subfield of R that is Galois of degree 2", r € N, over Q then « is constructible.
Hence cos(27/5) is constructible and the given statement is false. ]

Problem 1.(c). State true or false with justification. If ¥ C E C K are fields, such that
K/FE and E/F are both Galois extensions, then K/ F' is also a Galois extension.

Proof. Let F = Q,E = Q(+v/2),K = Q(v/2). Both E/F and K/E are Galois extensions
because in either case we have a degree 2 extension which is the splitting field of a degree
2 irreducible polynomial and also we are working in characteristic zero, hence the poly-
nomials are separable. But K/F is not Galois. This is because the minimal polynomial
of v/2 over Q is #* — 2. The roots of this polynomial (in some algebraic closure of Q) are
V2, V/2¢, V/2¢2, v/2¢ where ( is a primitive 4-th root of unity. Clearly not all the roots of
x* — 2 lie in Q(+/2). Hence K/F is separable but not normal and hence it is not a Galois

extension. Thus the given statement is false.
O



Problem 1.(d). State true or false with justification. A polynomial over a field of charac-
teristic zero is separable if and only if it is the product of distinct irreducible polynomials.

Proof. Suppose we have a polynomial f = g7'--- g where g;’s are distinct irreducible
polynomials (upto multiplication by scalars) and e; € N,Vi. Now if we have e; > 1 for
some i, then clearly any root of g; would be a repeated root of f. So if f is separable, then
we must have ¢; = 1,Vi. Conversely, we assume that f = g, --- g,. We know that over
a field of characteristic zero irreducible polynomials are separable. Hence all the g¢,’s are
separable. So if f has a repeated root, it can not be a repeated root of any of the g;’s. The
only other possibility is that it must be a root of two or more different g;,’s. Now by the
uniqueness of minimal polynomials, clearly the above situation can not happen. So f is
separable and the given statement is true. O

Problem 1.(e). State true or false with justification. If K is a finite field of characteristic
p, then every element of K has a unique p-th root in K.

Proof. Let I, be the field with p elements with a fixed algebraic closure F,. Without loss of
generality we may assume that K C F,. Let ¢ denote the p-th power map from F,, — F,,.
We know that ¢ fixes I, and it is clear that ¢(/K) C K. As we are dealing with maps

between fields obviously ¢ is injective. Hence [¢(K) : F,] = [K : F,] and linear algebra
tells us that ¢(K) = K. Hence every element in K has a unique p-th root in K and the
given statement is true. O

Problem 2.(a). Show that if F'is a field with char(F) # 2, and if K is a quadratic exten-
sion of F, then K = F(v/d) for some d € F, d not a square in F.

Proof. Letaw € K, a ¢ F. Then [K : F| = [K : F(«)][F(«) : F]. By our choice of «, [F(«) :
F] > 2 and it is given that [K : F)| = 2. Hence we must have [K : F(a)] =1= K = F(a).
So the minimal polynomial of o over F must be a polynomial of degree 2, say 2* + ax + b.
Now

o +an+b=0= (a+a/2)*— (a*/4—b) =0

(here we are using the fact that char(F') # 2, hence wehave 1/2 € F). Putf = a+a/2,d =
a?/4 — b, then 8 = V/d. d is obviously not a square in F because otherwise 3 and hence a
would belong to F. Clearly K = F(a) = F() = F(v/d) and we are done. O

Problem 2.(b). Find all quadratic extensions of Q which contain a primitive p-th root of
unity ¢ for some prime p # 2.

Proof. Let K be a quadratic extension of Q containing a primitive p-th root of unity ¢ for
some prime p # 2. We know that ( is a root of the polynomial 27! 4 --- + 2 + 1 which
is irreducible for any prime p. Hence [Q(¢) : Q] = p — 1. Now clearly we must have
p —1 <2 = p < 3. Hence by our assumptions the only possible value for p is 3. In that
situation [Q(¢) : Q] = 2 = K = Q((). This is the only possible quadratic extension. O



Problem 3. Prove that there exists finite fields of order p” for any prime p and any integer
n > 1, and unique upto isomorphism.

Proof. Consult any text book on Galois theory. O

Problem 4.(a). Let f(z) € F[z] be a polynomial of degree n. Let K be its splitting field.
Show that [K : F] divides n!.

Proof. We will prove this by induction on n. The statement is obviously true for n =
1,n = 2. So let us assume that the result is true for any natural number d < n i.e. for any
polynomial g(z) € F[z] of degree d with splitting field E, [E : F]|n!. Now we can split the
proof into two cases.

In the first case, assume that f(x) is an irreducible polynomial. Let o € K be a root of
f(z), then [F(«) : F] = n. Let h(z) = f(x)/(x — a). Then h(z) € F(«)[z] is a polynomial
of degree n — 1. It is clear that K is also the splitting field of h(z). Hence by our induction
hypothesis, [K : F(a)]|(n — 1)! (the induction hypothesis is valid for any field). But [K :
F]=[K: F(a)][F(a): F] =K : F(a)n, and hence [K : F]|n!.

Now let us assume that f(z) is an arbitrary polynomial. Let us write f(z) = g(z)h(x)
where g(x) € F[z] is an irreducible polynomial of degree r and h(z) € F[z] ia a polyno-
mial of degree s. We haven =17+ 5,0 <r <n,0 < s. E be the splitting field of g(x) con-
tained in K. Then by the first case and induction hypothesis, [E : F]|r! (it may happen that
r = n and for that we need the first case). Now K is also the splitting field of h(z) over E.
Hence by induction hypothesis, [K : E]|sl. So we have [E : F|[K : E]|rls! = [K : F]|rlsl.
But n = r +s = rls!|n!, hence [K : F]|n!.Thus the induction step is complete and we have
proved the statement. O

Problem 4.(b). Describe the splitting field of the polynomial 2> — 7 over Q, and find the
degree of the splitting field over Q.

Proof. Let us fix an algebraic closure Q of Q. Now the polynomial f(z) = 2° — 7 must
have 5 roots in Q. Note that 2° — 7 is an irreducible polynomial (by Eisenstein’s criterion)
and as we are working in characteristic zero, it must be separable. Hence the roots must
all be distinct. There must be a real root of the polynomial (because it has odd degree
and complex roots occur in pairs), let us denote it by a. Let { be a primitive 5th root of
unity. Clearly a, a(, a¢?, a¢®, a¢* are the distinct roots of f(z). Hence the splitting field K
of f(z) over Q can be described as

K = Q(a,al, al? al? ac*) = Q(a, ¢) = Q(a)Q(Q).

To compute the degree of K over Q, we compute [Q(«) : Q] and [Q(¢) : Q]. From the
properties of f(xz) stated above, clearly [Q(«) : Q] = 5. We know that over Q the poly-
nomial z* + z* + 2? + x + 1 is irreducible and ( is a root of this polynomial (this the
5th cyclotomic polynomial). So [Q(¢) : Q] = 4. Now we note that 4 and 5 are coprime
hence [K : Q] = 4-5 = 20 ( here we are using the following result : E;, E; be two ex-
tensions over F' of degree d,, d, respectively where (d;,d;) = 1 and let £ = E, Es, then
[E . F] = dldz). O



Problem 5.(a). Letn be an odd integer such that F' contains a primitive n-th root of unity
and char(F) # 2. Show that F' also contains a primitive 2n-th root of unity.

Proof. Let ¢ be the primitive n-th root in F. We have (—()*" = 1. Note that ( # —( because
char(F') # 2. Let us denote —( by w and we claim that w is the required primitive 2n-th
root of unity. If not, let w be a primitive d-th root of unity for d < 2n. Hence

wl=1= ("= (-1~
Now there are two possibilities. If d is odd, then
(P=-1="=1=nl2d

(by definition of {). As n is odd, we must have n|d. Hence the only possibility is d = n,
but clearly w™ # 1. So we arrive at a contradiction. If d is even, then

¢t =1=n|d.

Following the same argument as before we again arrive at a contradiction. Hence w is the
required 2n-th root of unity contained in F'. O

Problem 5.(b). Let K be a finite extension of Q. Show that there is only a finite number
of roots of unity in K.

Proof. Let S be the set of roots of unity in K. Now every root of unity is a primitive n-th
root of unity for some n € N and this integer n is uniquely determined by the root. Let S,
be the set of primitive n-th roots of unity in K. Clearly S,, () S,, = 0 for n # m. Hence we
can write

S=S1|_|52|_|53|_|“'-

We should note that some of the sets S, may be empty. Now if possible let us assume
that the set S has infinitely many elements. As each of the sets S, has atmost n many
elements (because it is the solution set of the polynomial " — 1 in K), we must have an
increasing sequence of integers n; < ny < ---, which is unbounded, such that S,,, # 0.
But for a € S, we have [Q(«) : Q] = ¢(n;) where ¢ is the Euler’s phi function (. over
Q the nth cyclotomic polynomial is irreducible of degree ¢(n) for any n € N). From the
definition of ¢ it is clear that ¢(n;) — oo asn; — oo. Now [K : Q] = [K : Q(a)][Q(«) :
Q] = [K : Q(a)]¢(n;), hence ¢(n;)|[K : Q]. But given that [K : Q] is finite and ¢(n;) — oo
by our assumption, we have arrived at a contradiction. So |S| < oco.

O

Problem 6. Prove that the extension K/F is Galois if and only if K is the splitting field
of some separable polynomials over F.

Proof. Consult any text book on Galois theory. O



Problem 7. Consider the polynomial f(z) = a* — 32z® — 10 € Q[z]. Find the splitting
field K of f(z) over Q. Describe the Galois group G of the extension K/Q. Show the
correspondence between all the subgroups of G and all the subfields of K containing Q.

Proof. We have the following factorization of f(z) over Q
f(z) =a2* —32% — 10 = (2 — 5)(2* + 2).

Fixing an algebraic closure of Q we can write down the roots of these two polynomials,
which are {v/5, —/5}, {v/2i, —/2i} where i = v/—1. Hence we can describe the splitting
field as K = Q(v/5, —V/5, v/2i, —/2i) = Q(/5, v/2i).

Clearly f(z) is a separable polynomial and hence K /Q is a Galois extension. Let g(z) =
z? — 5,h(z) = 2® + 2 and E, F be the splitting fields of g(z), h(z) respectively. Clearly
E = Q(/5), F = Q(v/2i). Both g and % are irreducible over Q and E/Q, F//Q are Galois
extensions of degree 2. Hence the Galois group in each case is a group of order 2 and
hence isomorphic to Z,;. Now any element of GG is determined by its action on V5 and
v/2i. We know that roots of an irreducible polynomial are permuted by elements of the
Galois group. Hence elements of G must take V5 — +/5 and v2i — ++1/2i. Thus there
are only 4 possible elements in G. Let o, 7 be elements of G defined as follows:

o(V5) = —V5,0(V/2i) = v2i and 7(V5) = V5, 7(V/2i) = —/2i.
It is easy to see that:
ot =1Id,7*=1Id,or = 70.

Hence it follows that G = (o) & (1) = Zy & Zo.

The only possible subgroups of G are : {1}, (0),(7),G. Corresponding to {1} and G,
we get the subfields K and Q respectively. Clearly o fixes v/2i, hence F' = Q(+/2i) is
contained in the fixed field of (¢). But by fundamental theorem of Galois theory, the
degree of the fixed field of (¢) over Qis |G|/|{(c)| = 2. Hence F is the field corresponding
to (o). Similarly we can argue that the field corresponding to (7) is £. Thus we have all
the correspondences. O



