
Mid-Semestral Exam 2014-2015

January 31, 2016

Problem 1.(a). State true or false with justification. For fields F ⊆ K, and α ∈ K, if
[F (α) : F ] is odd then F (α) = F (α2).

Proof. Suppose F (α) 6= F (α2). Clearly this implies that α /∈ F (α2). We can also conclude
that the minimal polynomial of α over F (α2) is x2− α2. Hence [F (α) : F (α2)] = 2. But we
know that [F (α) : F ] = [F (α) : F (α2)][F (α2) : F ]. Hence we must have 2|[F (α) : F ] and
thus we arrive at a contradiction. So F (α) = F (α2) and the given statement is true.

Problem 1.(b). State true or false with justification. The regular 5-gon is not constructible
by straightedge and compass.

Proof. The problem of constructing the regular n-gon is equivalent to the problem of
constructing the angle 2π/n which in turn is equivalent to the problem of construct-
ing cos(2π/n). In our problem we need to check the constructibility of cos(2π/5). Now
cos(2π/5) = (exp2πi/5+exp−2πi/5)/2. So we have Q ⊂ Q(cos(2π/5)) ⊂ Q(cos(exp2πi/5)).
Now Q(cos(exp2πi/5))/Q is a cyclotomic extension of degree 5−1 = 4. Also [Q(cos(exp2πi/5)) :
Q(cos(2π/5))] = 2 because cos(exp2πi/5) satisfies the polynomial x2 − 2 cos(2π/5)x+ 1 and
these two fields can not be equal. Hence [Q(cos(2π/5)) : Q] = 2. By the fundamental
theorem of Galois theory this extension is Galois. We know that if a real number α is con-
tained in a subfield of R that is Galois of degree 2r, r ∈ N, over Q then α is constructible.
Hence cos(2π/5) is constructible and the given statement is false.

Problem 1.(c). State true or false with justification. If F ⊆ E ⊆ K are fields, such that
K/E and E/F are both Galois extensions, then K/F is also a Galois extension.

Proof. Let F = Q, E = Q(
√
2), K = Q( 4

√
2). Both E/F and K/E are Galois extensions

because in either case we have a degree 2 extension which is the splitting field of a degree
2 irreducible polynomial and also we are working in characteristic zero, hence the poly-
nomials are separable. But K/F is not Galois. This is because the minimal polynomial
of 4
√
2 over Q is x4 − 2. The roots of this polynomial (in some algebraic closure of Q) are

4
√
2, 4
√
2ζ, 4
√
2ζ2, 4
√
2ζ3 where ζ is a primitive 4-th root of unity. Clearly not all the roots of

x4 − 2 lie in Q( 4
√
2). Hence K/F is separable but not normal and hence it is not a Galois

extension. Thus the given statement is false.
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Problem 1.(d). State true or false with justification. A polynomial over a field of charac-
teristic zero is separable if and only if it is the product of distinct irreducible polynomials.

Proof. Suppose we have a polynomial f = ge11 · · · gerr where gi’s are distinct irreducible
polynomials (upto multiplication by scalars) and ei ∈ N,∀i. Now if we have ei > 1 for
some i, then clearly any root of gi would be a repeated root of f . So if f is separable, then
we must have ei = 1,∀i. Conversely, we assume that f = g1 · · · gr. We know that over
a field of characteristic zero irreducible polynomials are separable. Hence all the gi’s are
separable. So if f has a repeated root, it can not be a repeated root of any of the gi’s. The
only other possibility is that it must be a root of two or more different gi’s. Now by the
uniqueness of minimal polynomials, clearly the above situation can not happen. So f is
separable and the given statement is true.

Problem 1.(e). State true or false with justification. If K is a finite field of characteristic
p, then every element of K has a unique p-th root in K.

Proof. Let Fp be the field with p elements with a fixed algebraic closure Fp. Without loss of
generality we may assume that K ⊂ Fp. Let φ denote the p-th power map from Fp → Fp.
We know that φ fixes Fp and it is clear that φ(K) ⊆ K. As we are dealing with maps
between fields obviously φ is injective. Hence [φ(K) : Fp] = [K : Fp] and linear algebra
tells us that φ(K) = K. Hence every element in K has a unique p-th root in K and the
given statement is true.

Problem 2.(a). Show that if F is a field with char(F ) 6= 2, and if K is a quadratic exten-
sion of F , then K = F (

√
d) for some d ∈ F , d not a square in F .

Proof. Let α ∈ K, α /∈ F . Then [K : F ] = [K : F (α)][F (α) : F ]. By our choice of α, [F (α) :
F ] ≥ 2 and it is given that [K : F ] = 2. Hence we must have [K : F (α)] = 1⇒ K = F (α).
So the minimal polynomial of α over F must be a polynomial of degree 2, say x2 + ax+ b.
Now

α2 + aα + b = 0⇒ (α + a/2)2 − (a2/4− b) = 0

(here we are using the fact that char(F ) 6= 2, hence we have 1/2 ∈ F ). Put β = α+a/2, d =

a2/4− b, then β =
√
d. d is obviously not a square in F because otherwise β and hence α

would belong to F . Clearly K = F (α) = F (β) = F (
√
d) and we are done.

Problem 2.(b). Find all quadratic extensions of Q which contain a primitive p-th root of
unity ζ for some prime p 6= 2.

Proof. Let K be a quadratic extension of Q containing a primitive p-th root of unity ζ for
some prime p 6= 2. We know that ζ is a root of the polynomial xp−1 + · · · + x + 1 which
is irreducible for any prime p. Hence [Q(ζ) : Q] = p − 1. Now clearly we must have
p − 1 ≤ 2 ⇒ p ≤ 3. Hence by our assumptions the only possible value for p is 3. In that
situation [Q(ζ) : Q] = 2⇒ K = Q(ζ). This is the only possible quadratic extension.
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Problem 3. Prove that there exists finite fields of order pn for any prime p and any integer
n ≥ 1, and unique upto isomorphism.

Proof. Consult any text book on Galois theory.

Problem 4.(a). Let f(x) ∈ F [x] be a polynomial of degree n. Let K be its splitting field.
Show that [K : F ] divides n!.

Proof. We will prove this by induction on n. The statement is obviously true for n =
1, n = 2. So let us assume that the result is true for any natural number d < n i.e. for any
polynomial g(x) ∈ F [x] of degree d with splitting field E, [E : F ]|n!. Now we can split the
proof into two cases.

In the first case, assume that f(x) is an irreducible polynomial. Let α ∈ K be a root of
f(x), then [F (α) : F ] = n. Let h(x) = f(x)/(x − α). Then h(x) ∈ F (α)[x] is a polynomial
of degree n− 1. It is clear that K is also the splitting field of h(x). Hence by our induction
hypothesis, [K : F (α)]|(n − 1)! (the induction hypothesis is valid for any field). But [K :
F ] = [K : F (α)][F (α) : F ] = [K : F (α)]n, and hence [K : F ]|n!.

Now let us assume that f(x) is an arbitrary polynomial. Let us write f(x) = g(x)h(x)
where g(x) ∈ F [x] is an irreducible polynomial of degree r and h(x) ∈ F [x] ia a polyno-
mial of degree s. We have n = r + s, 0 < r ≤ n, 0 ≤ s. E be the splitting field of g(x) con-
tained inK. Then by the first case and induction hypothesis, [E : F ]|r! (it may happen that
r = n and for that we need the first case). Now K is also the splitting field of h(x) over E.
Hence by induction hypothesis, [K : E]|s!. So we have [E : F ][K : E]|r!s! ⇒ [K : F ]|r!s!.
But n = r+ s⇒ r!s!|n!, hence [K : F ]|n!.Thus the induction step is complete and we have
proved the statement.

Problem 4.(b). Describe the splitting field of the polynomial x5 − 7 over Q, and find the
degree of the splitting field over Q.

Proof. Let us fix an algebraic closure Q of Q. Now the polynomial f(x) = x5 − 7 must
have 5 roots in Q. Note that x5 − 7 is an irreducible polynomial (by Eisenstein’s criterion)
and as we are working in characteristic zero, it must be separable. Hence the roots must
all be distinct. There must be a real root of the polynomial (because it has odd degree
and complex roots occur in pairs), let us denote it by α. Let ζ be a primitive 5th root of
unity. Clearly α, αζ, αζ2, αζ3, αζ4 are the distinct roots of f(x). Hence the splitting field K
of f(x) over Q can be described as

K = Q(α, αζ, αζ2, αζ3, αζ4) = Q(α, ζ) = Q(α)Q(ζ).

To compute the degree of K over Q, we compute [Q(α) : Q] and [Q(ζ) : Q]. From the
properties of f(x) stated above, clearly [Q(α) : Q] = 5. We know that over Q the poly-
nomial x4 + x3 + x2 + x + 1 is irreducible and ζ is a root of this polynomial (this the
5th cyclotomic polynomial). So [Q(ζ) : Q] = 4. Now we note that 4 and 5 are coprime
hence [K : Q] = 4 · 5 = 20 ( here we are using the following result : E1, E2 be two ex-
tensions over F of degree d1, d2 respectively where (d1, d2) = 1 and let E = E1E2, then
[E : F ] = d1d2).
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Problem 5.(a). Let n be an odd integer such that F contains a primitive n-th root of unity
and char(F ) 6= 2. Show that F also contains a primitive 2n-th root of unity.

Proof. Let ζ be the primitive n-th root in F . We have (−ζ)2n = 1. Note that ζ 6= −ζ because
char(F ) 6= 2. Let us denote −ζ by ω and we claim that ω is the required primitive 2n-th
root of unity. If not, let ω be a primitive d-th root of unity for d < 2n. Hence

ωd = 1⇒ ζd = (−1)d.

Now there are two possibilities. If d is odd, then

ζd = −1⇒ ζ2d = 1⇒ n|2d

(by definition of ζ). As n is odd, we must have n|d. Hence the only possibility is d = n,
but clearly ωn 6= 1. So we arrive at a contradiction. If d is even, then

ζd = 1⇒ n|d.

Following the same argument as before we again arrive at a contradiction. Hence ω is the
required 2n-th root of unity contained in F .

Problem 5.(b). Let K be a finite extension of Q. Show that there is only a finite number
of roots of unity in K.

Proof. Let S be the set of roots of unity in K. Now every root of unity is a primitive n-th
root of unity for some n ∈ N and this integer n is uniquely determined by the root. Let Sn
be the set of primitive n-th roots of unity in K. Clearly Sn

⋂
Sm = ∅ for n 6= m. Hence we

can write

S = S1

⊔
S2

⊔
S3

⊔
· · · .

We should note that some of the sets Sn may be empty. Now if possible let us assume
that the set S has infinitely many elements. As each of the sets Sn has atmost n many
elements (because it is the solution set of the polynomial xn − 1 in K), we must have an
increasing sequence of integers n1 < n2 < · · · , which is unbounded, such that Sni

6= ∅.
But for α ∈ Sni

we have [Q(α) : Q] = φ(ni) where φ is the Euler’s phi function (∵ over
Q the nth cyclotomic polynomial is irreducible of degree φ(n) for any n ∈ N). From the
definition of φ it is clear that φ(ni) → ∞ as ni → ∞. Now [K : Q] = [K : Q(α)][Q(α) :
Q] = [K : Q(α)]φ(ni), hence φ(ni)|[K : Q]. But given that [K : Q] is finite and φ(ni) → ∞
by our assumption, we have arrived at a contradiction. So |S| <∞.

Problem 6. Prove that the extension K/F is Galois if and only if K is the splitting field
of some separable polynomials over F .

Proof. Consult any text book on Galois theory.
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Problem 7. Consider the polynomial f(x) = x4 − 3x2 − 10 ∈ Q[x]. Find the splitting
field K of f(x) over Q. Describe the Galois group G of the extension K/Q. Show the
correspondence between all the subgroups of G and all the subfields of K containing Q.

Proof. We have the following factorization of f(x) over Q

f(x) = x4 − 3x2 − 10 = (x2 − 5)(x2 + 2).

Fixing an algebraic closure of Q we can write down the roots of these two polynomials,
which are {

√
5,−
√
5}, {
√
2i,−

√
2i} where i =

√
−1. Hence we can describe the splitting

field as K = Q(
√
5,−
√
5,
√
2i,−

√
2i) = Q(

√
5,
√
2i).

Clearly f(x) is a separable polynomial and henceK/Q is a Galois extension. Let g(x) =
x2 − 5, h(x) = x2 + 2 and E,F be the splitting fields of g(x), h(x) respectively. Clearly
E = Q(

√
5), F = Q(

√
2i). Both g and h are irreducible over Q and E/Q, F/Q are Galois

extensions of degree 2. Hence the Galois group in each case is a group of order 2 and
hence isomorphic to Z2. Now any element of G is determined by its action on

√
5 and√

2i. We know that roots of an irreducible polynomial are permuted by elements of the
Galois group. Hence elements of G must take

√
5 7→ ±

√
5 and

√
2i 7→ ±

√
2i. Thus there

are only 4 possible elements in G. Let σ, τ be elements of G defined as follows:

σ(
√
5) = −

√
5, σ(
√
2i) =

√
2i and τ(

√
5) =

√
5, τ(
√
2i) = −

√
2i.

It is easy to see that:

σ2 = Id, τ 2 = Id, στ = τσ.

Hence it follows that G ∼= 〈σ〉 ⊕ 〈τ〉 ∼= Z2 ⊕ Z2.
The only possible subgroups of G are : {1}, 〈σ〉, 〈τ〉, G. Corresponding to {1} and G,

we get the subfields K and Q respectively. Clearly σ fixes
√
2i, hence F = Q(

√
2i) is

contained in the fixed field of 〈σ〉. But by fundamental theorem of Galois theory, the
degree of the fixed field of 〈σ〉 over Q is |G|/|〈σ〉| = 2. Hence F is the field corresponding
to 〈σ〉. Similarly we can argue that the field corresponding to 〈τ〉 is E. Thus we have all
the correspondences.
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